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Abstract

Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of
services and enhance residents’ quality of life. Understanding the pattern of urban greenness and exploring its
spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the
pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in
1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the
subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to
reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results
demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover
fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple
techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited
a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied.
Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small
green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious
during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization
and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting
accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for
sustainable urban development.
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Introduction

The rapid urbanization in China in recent decades, accompa-

nied by the continuous increase in urban population and the

unprecedented growth of cities, has put significant pressure on

urban environments. This pressure has led to severe environmen-

tal issues, such as urban heat islands, air pollution, and urban

flooding [1]. Moreover, improved economic conditions have lead

residents to demand better living environments and a better

quality of life.

Urban greenness, represented in this study by all vegetation

cover in and around cities, e.g., street plantation, lawns, parks,

gardens, crops, wetlands, and forests, contributes valuable

ecosystem services and plays an irreplaceable role in the

improvement of the urban environment [2]. Urban vegetation

improves air quality [3], intercepts storm water runoff [4], reduces

energy demands [5], and provides numerous psychological

benefits, aesthetic views and restorative opportunities for city

dwellers who may otherwise have limited exposure to natural

environments [6,7].

Rapid urbanization has resulted in significant alterations in the

quality and quantity of urban greenness [8]. In a large-sample

survey involving 386 European cities, green space was found to

increase with the city area and slightly decline with the population

density [9]. Dallimer et al. indicated that nine out of thirteen cities

in England exhibited declining urban green spaces between 2000

and 2008 [10]. Infill development during urbanization is

considered to be a major cause of green space loss. Similarly, a

statistically significant decline in tree cover was found in many

major U.S. cities, along with increased population densities and

likely increased development pressure between 2003 and 2009

[11]. Unlike the declining trend reported by the above studies,

green space coverage may increase with urbanization intensity.

Green space coverage in the built-up areas of Chinese cities, for

example, has increased steadily during the last two decades [12].

Yang et al. confirmed the greening trend in larger cities, and they
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note that rapid urbanization caused a dramatic turnover in

vegetation cover [13]. Accurate and timely monitoring of the

status of urban greenness is essential for the protection and

management of urban environments. Furthermore, characterizing

and understanding the trends in urban vegetation cover change

provide insights into the relationship between urban greenness and

urbanization and can help guide sustainable urban development

[14].

As an important source of urban information, remote sensing

data provide a spatially consistent coverage of large areas with

both high spatial detail and high temporal frequency [15]. With

the increased availability of current and historical remotely sensed

data and new analytical techniques, it is now possible to quantify

urban greenness in a timely and cost-effective manner [16,17].

Despite the increasing application of high-resolution images,

medium-resolution imagery (e.g., Landsat and SPOT) is still the

preferred data source. Specifically, medium-resolution imagery is

globally available, and it uniquely composes the only long-term,

consistent digital dataset. However, commonly used detection

techniques, such as the calculation of classification and vegetation

indices from medium spatial resolution imagery, may be

ineffective in quantifying physically fine-resolution information

related to urban greenness. The urban environment is highly

heterogeneous and complex, resulting in the mixed pixel problem

[18,19]. Because the status and variation of urban greenness

typically occur at finer spatial scales than most moderate resolution

imagery, the vegetation in a pixel can only be recorded as either

present or absent with traditional hard classifiers, resulting in a loss

of information on isolated vegetation and within-class variation

[20,21]. However, the status of and subtle change in urban

greenness are highly related to the urban environment and

significantly affect local residents’ quality of life. The specific

characteristics of the urban landscape require further consider-

ation regarding the capabilities and limitations of remote sensing

data and the use of appropriate analysis techniques [22,23].

A variety of approaches has been developed to overcome the

mixed pixel problem in urban landscapes. Spectral mixture

analysis techniques (SMA and MESMA) [24] have been widely

utilized to estimate the proportion of representative urban land

cover within each pixel because of their ability to support the

repeatable and accurate extraction of quantitative subpixel

information with physical meaning [25,26]. To date, a consider-

able number of studies have utilized this method to characterize

urban compositions [18,27,28], map urban vegetation [16,19,29],

and monitor urban changes [30,31,32,33]. However, only a few

multi-temporal studies have employed these techniques to monitor

long-term changes in urban greenness [34]. Given the sharp

growth in urban areas in China in terms of area and intensity, it is

imperative to analyze the pattern of vegetation cover change

within Chinese cities.

Taking Hangzhou, one of the most rapidly urbanizing cities in

eastern China, this paper proposes a feasible and cost-effective

greenness change detection method in highly-fragmented urban

environment by integrating multi-date remote sensing, MESMA

and GIS spatial analysis. Specifically, this paper explores the

spatiotemporal dynamics and evolution of greenness in response to

the rapid urbanization process in the past two decades (1990–

2010) aiming to improve the understanding of the effects of

urbanization on greenness patterns and provide basic information

for appropriate decision-making towards urban sustainable

development.

Methods

Study site
Hangzhou, the capital of Zhejiang Province, is located near the

eastern edge of the Qiantang River in the southern Yangtze River

Delta (Figure 1). This study was conducted in the area within the

administrative boundaries of Hangzhou, the city proper, which

covers an area of 728 km2 and has approximately 3.56 million

registered permanent residents. At the end of 2010, the local GDP

per capita was approximately 109,708 RMB Yuan (equivalent to

17,981 US dollars) [35]. As a notable international garden city, as

well as a vigorous and economically competitive key city,

Hangzhou has experienced significant economic development

and tremendous population growth over the past decades [15].

The urbanization process has significantly modified the vegetation

cover in the wetland, forest, and agriculture ecosystems in and

around the city.

Data and preprocessing
The Landsat TM images (Path: 119, Row: 39) used to conduct

the study were obtained on October 8, 1990, September 23, 2002,

and May 24, 2010 (i.e., a total of 20 years). The level 1T data were

carefully selected from the USGS GLOVIS portal [36], with

special consideration of phenology and cloudlessness. Thermal

bands were excluded from the analysis. FLAASH (Fast Line-of-

sight Atmospheric Analysis of Spectral Hypercubes) was used for

atmospheric correction of these TM data. The study area was then

extracted using the boundaries of Hangzhou.

In addition to Landsat imagery, the following ancillary data

were collected for analytical purposes: (1) two historical true color

aerial photographs with a 0.5-m resolution, acquired on Septem-

ber 26, 2002 and May 20, 2011; and (2) land-use maps derived

from the National Detailed Land-use Inventory for 2010. All the

auxiliary data were registered to the same projection as the TM

images: WGS 84, UTM map projection Zone 50, with a root

mean squared error (RMSE) of less than 15 m.

Greenness mapping requires special consideration of vegetation

phenology. Generally, images from the same season with full

vegetation growth are the most appropriate for detecting changes.

However, because a high-quality image was not available for the

late summer of 2010, a TM image acquired on May 24 was used.

No significant bias in the vegetation cover was observed in late

May or late September (except for cropland), according to our pre-

experiment using a MODIS NDVI time series and a comparison

between the fraction results from a Landsat 5 TM image acquired

on May 24, 2010 and a Landsat 7 ETM+ SLC-off image acquired

on September 21, 2010. To minimize the information error

caused by the crop phenology, a common cropland mask was

developed based on the 2010 land-use map and visual interpre-

tation of three TM images. The common cropland pixels for the

three dates were extracted, and the vegetation fraction values were

set to a consistent value of 1 (Figure 2c, yellow circles). Thus, we

assumed that the phenological effect of the vegetation in our study

had no effect on our results during processing.

Multiple endmember spectral mixture analysis
The SMA approach assumes that a landscape is formed from

continuously varying proportions of idealized land cover types or

spectrally ‘pure’ materials called endmembers. In linear SMA, the

reflectance P’ measured at pixel i represents a linear combination

of N endmembers, weighted by their areal fractions fki, within the

pixel [24,25,33] as follows:
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P
,
il~

XN

k~1

fki|Pklzeil and
XN

k~1

fki~1 ð1Þ

where Pkl is the reflectance of endmember k for a specific band (l)

and eil is a residual term indicating the unmodeled portions of the

spectrum. The model fit is assessed via an RMSE metric [24,37],

calculated as follows:

RMSEi~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
l~1

(eil)2=M

vuut ð2Þ

where M is the number of bands [38]. The standard SMA has two

major limitations. First, only one spectrum is allowed for each

endmember, i.e., every image pixel is interpreted using the same

endmember spectra. Therefore, the method is unable to account

for within-class spectral variability. This is particularly problematic

in Chinese cities where a large variation of material spectra exists

due to rapid development and ubiquitous urban reconstruction.

Second, the standard SMA is most often implemented with a fixed

number of endmembers for the entire image, regardless of whether

the ground components represented by the endmembers are

present in the pixel. This may result in the decreased accuracy of

the estimated fractions [18,25,39]. MESMA, which is an extension

of the standard SMA approach, allows the number and type of

endmembers to vary on a per pixel basis to better represent the

spectral variability of land cover; thus, it is more suitable for urban

landscapes [25,27].

In this study, MESMA was conducted according to the

following steps: (1) endmember selection, (2) spectral unmixing

modeling, and (3) accuracy assessment. These steps are each

detailed in turn. MESMA was implemented using VIPER Tools

Version 1.5, which is a plug-in to the ENVI software package [40].

Endmember selection. The careful selection of representa-

tive endmembers is essential to all applications of SMA [20,41,42].

In this study, the endmembers were extracted from the 1990,

2002, and 2010 Landsat TM images. When building a spectral

library for MESMA, the number of spectra needed for adequately

representing the spectral variation in the materials and for

attaining computational efficiency should be considered

[25,43,44]. Therefore, the endmembers were organized into five

groups: vegetation, impervious surfaces, soil, water, and shade.

Each group included several subsets, e.g., vegetation (urban forest,

primary forest, grass, and crops), impervious surfaces (urban center

and suburbs), soil (mine soil, farmland soil, and construction sites),

and water (lakes and rivers). An endmember for shade (zero value

in all bands) was included in all of the models [41,45].

First, the spectrally ‘‘pure’’ pixels were collected from the image

based on the pixel purity index (PPI) [46] and high-resolution

aerial photographs to build a candidate spectral library for each

endmember. Pixels with high PPI scores, representing pure land

cover in the high-resolution aerial photograph and having

reasonable spectral signatures, were chosen as candidate spectra

and grouped into the corresponding subclasses. The representative

spectra for each subclass were then selected from the candidate

spectra using the endmember average root mean squared error

(EAR) [41], count-based endmember selection (CoB) [47], and

minimum average spectral angle (MASA) [38]. The optimal set of

spectra for each endmember was iteratively selected by adding

spectra with a high CoB index, low EAR, or low MASA to the

library and assessing the model performance using RMSE images

and a visual comparison with the high-resolution aerial photo-

graphs [16]. Ultimately, libraries with 47, 53, and 69 spectra were

used for the 1990, 2002, and 2010 images, respectively, to run the

unmixing models.

Spectral unmixing modeling. Previous research has shown

that natural systems are usually best modeled by two endmembers,

while disturbed regions require three and urban landscapes

Figure 1. A map of the study area, i.e., Hangzhou city proper.
doi:10.1371/journal.pone.0112202.g001
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require four [48]. Therefore, two-endmember models with all the

spectra were first applied to map each pixel in the image (Table 1).

Then, only spectra that effectively represented the pure land cover

within the urban area in the two-endmember models were

retained to run three- and four-endmember models. Intra-class

spectral mixtures were only considered for impervious surfaces

[48]. Every model was evaluated for every pixel in the image.

Constraints were determined based on iterative experimentation

and the findings of previous studies [37,41,45]. The non-shade

fractions were confined to the range of 20.05 to 1.05, the

maximum allowable shade fraction was set to 0.5, and a maximum

RMSE of 2.5% in reflectance was applied.

After the models with the different levels of spectral complexity

(i.e., two-, three-, and four-endmember models) were applied, the

model with the lowest RMSE at each level was compared to

determine the best model for each pixel. Generally, a lower RMSE

in a more complex model does not necessarily indicate better

modeling of the true land cover component [28,49]. In addition,

we noticed that the introduction of a water endmember

significantly improved the model performance in the water-

containing and water-edge pixels (e.g., wetlands), but it also caused

a mis-unmixing between water and shade classes in pixels affected

by topographic shadowing within mountainous regions [50].

Based on previous findings, simpler endmember models are

preferred over more complex endmember models, except in cases

in which adding an endmember significantly improves the RMSE

beyond a specified threshold [30,47,50]. The RMSE threshold

value between the two- and three-endmember models was 0.2%

for the reflectance, the RMSE threshold between the three- and

four-endmember models was 0.4%, and the RMSE threshold

between the two- and four-endmember models was 0.6%. When a

water endmember was used, the corresponding threshold values

were set to 0.7%, 0.4% and 1.1%, respectively, for the reflectance.

The fractions produced by the optimal models were then shade-

normalized [24], rescaled [26], and combined to generate

fractional maps of each component. Vegetation cover fraction

(VCF) maps were retained to investigate the vegetation cover

change.

Accuracy assessment. Evaluating vegetation fraction esti-

mates can be challenging due to the difficulty of obtaining

Figure 2. Vegetation fraction maps of Hangzhou for (a) 1990, (b) 2002, and (c) 2010. The vegetation fractions are indicated by the
grayscale, where 1 represents pure vegetation (light gray) and 0 represents no vegetation (dark gray) in each pixel.
doi:10.1371/journal.pone.0112202.g002
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reference data, especially for historical datasets. Because of the

lack of high-quality reference images from the 1990s, accuracy

assessments for only two dates were performed using the aerial

photographs acquired in 2002 and 2011 for the relevant TM

images. We assumed that the result of the 1990 fraction image

would have acceptable accuracy if the vegetation fraction images

in 2002 and 2010 were reasonably accurate. The lack of an

accuracy assessment for the 1990 fraction image is a limitation of

this study.

Two hundred samples were used to assess the modeled VCF

after removing the samples with apparent land cover changes.

Each sample had a window size of 363 pixels to reduce the impact

of geometric errors between the aerial photographs and the TM

images [27,51]. The ‘true’ proportion of vegetation was then

calculated by dividing the area of vegetation cover measured

through visually interpreting the aerial photograph by the total

sampling area (i.e., 8,100 m2). The accuracy of the vegetation

cover fraction was assessed using three metrics: the coefficient of

determination (R2), the root mean squared error (RMSE), and the

systematic error (SE) [52] as follows:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XS

i~1

V̂Vi{Vi

� �2
=S

vuut ð3Þ

SE~
XS

i~1

V̂Vi{Vi

� �
=S ð4Þ

where V̂Vi is the modeled fractional value of vegetation measured at

sample i, Vi is the reference fractional value, and S is the number

of samples. The RMSE is a measure of the overall estimation

accuracy for all samples, and the SE is a measure of the effects of

systematic errors (e.g., overestimation or underestimation) [53].

RGB-vegetation fraction model
An RGB-vegetation fraction model based on additive color

theory was applied to the multi-temporal vegetation fraction

images to interpret change events in our study area. Using this

technique, multiple dates of vegetation fraction images could be

viewed at one time, and the changes were highlighted. Vegetation

fraction images in 1990, 2002, and 2010 were placed chronolog-

ically by red, green, and blue colors, respectively. Any combina-

tion of primary colors of similar brightness produces a comple-

mentary color that can identify the direction and magnitude of the

vegetation cover change.

Change intensity analysis
To study the spatial distribution of the vegetation change

intensity, fraction change images from 1990 to 2002 (T1) and from

2002 to 2010 (T2) were produced by subtracting two sequential

fraction images. The intensity of the fraction change was divided

into 4 intensity categories: extreme decrease (21 to 20.5),

moderate decrease (20.5 to 20.2), moderate increase (0.2 to

0.5) and extreme increase (0.5 to 1). The relationship between the

change intensity and the distance to the urban center was analyzed

by counting the percentage of pixels of a certain intensity category

at a certain distance.

Concentric analysis
A concentric analysis technique was used to obtain insight into

the relationship between urban vegetation status and urban

expansion. Twenty concentric belts were identified, radiating from

the urban center to the fringe (Figure 3). Each belt spanned

0.5 km, approximately 16 pixels in the TM image, which is

approximately two times the minimum resolution of assessment

suggested by Powell et al. [18]. To account for the multi-nuclei

expansion pattern in Hangzhou [54], we only applied the

concentric analysis to the main urban area rather than to the

entire study area. Furthermore, two famous tourist attractions, the

West Lake Scenic Spots (WLSS) and the Xixi National Wetland

Park (XNWP), were excluded from the concentric analysis because

they were subject to a different land use policy than the rest of the

study area.

MESMA provided subpixel information with physical meaning,

where a fraction value of 1 represented full coverage of vegetation

within a pixel. The vegetation fraction images were reclassified

into 4 density categories: low coverage (0 to 0.2), middle coverage

(0.2 to 0.5), middle-high coverage (0.5 to 0.8), and high coverage

(0.8 to 1). The overall average vegetation fraction and the area

percentages of the pixels within the 4 density categories were

calculated for each belt to estimate the general pattern of urban

greenness.

Results

Accuracy assessment
The R2, RMSE, and SE were calculated for the 2002 and 2010

vegetation fraction images to evaluate the modeled results

quantitatively. Scatter plots of the accuracy assessment results

are shown in Figure 4. The RMSE was 7.78% for the 2010 image

Table 1. Combinations of endmember models by land cover class.

2-endmember 3-endmember 4-endmember

Imp+SHD Impa+Impb+SHD Imp+V+S+SHD

V+SHD Imp+V+SHD Imp+V+W+SHD

S+SHD Imp+S+SHD S+V+W+SHD

W+SHD Imp+W+SHD Impa+Impb+V+SHD

V+S+SHD Impa+Impb+S+SHD

V+W+SHD Impa+Impb+W+SHD

S+W+SHD

V refers to green vegetation, Imp to impervious surface, S to soil, W to water, and SHD to shade. Endmembers with subscripts (a, b) were used multiple times. The same
endmember spectra were not used in one combination.
doi:10.1371/journal.pone.0112202.t001

Urban Greenness Dynamics and MESMA

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e112202



and 10.38% for the 2002 image. The R2 values were relatively

high, ranging from 0.929 to 0.881, indicating a good fit between

the ‘true’ fraction and the fraction derived from MESMA.

The analysis of the residuals, in terms of the SE (20.800% for

2010 and 0.320% for 2002), indicated that there was no significant

underestimation or overestimation relative to the reference

fraction.

Spatiotemporal analysis of urban greenness change
To construct vegetation cover images for corresponding years,

the amount of vegetation in each pixel was represented by the

assigned gray value. Brighter areas signify higher proportions of

vegetation, and darker areas signify lower proportions of

vegetation.

Overall, the urban greenness of Hangzhou has decreased

steadily over the past two decades (Figures 2a, b, and c). In 1990,

most of the high-density green space was distributed in natural

land-use areas (i.e., agricultural areas, primary forests, and

wetlands) around the built-up area, and the vegetation cover

within the city was relatively sparse. Along with the urban

expansion, an obvious loss of greenness occurred in the urban

fringe and the suburban area. The urban greenness became more

fragmented and isolated, except in mountainous areas and in the

remaining cropland. The total percentage of the vegetated area of

Hangzhou decreased greatly from 64.61% to 42.76% (Table 2),

especially in T2, nearly twice the rate observed in T1.

Using the RGB-vegetation fraction model, distinctly different

patterns were demonstrated among the various segments of the

urban area (Figure 5). The core built-up area exhibited an

increasing percentage of vegetation cover in T1 and T2,

dominated by cyan and blue colors (Figure 5c). The other colors,

such as red, yellow and green, revealed a complex reconfiguration

of urban greenness in the core built-up area over the past two

decades due to urban reconstruction and the urban greening

project. In contrast, the urban peripheral areas showed dramatic

declines in vegetation cover in the two periods. Vast fields of red

pixels were observed near the core built-up area, indicating

vegetation loss occurred during the urban expansion in T1

(Figure 5b). Two large blocks of vegetation reduction occurred in

the eastern and southern parts of the city due to the construction of

two new subcities (Xiasa and Jiangnan). Furthermore, a more

severe decrease in the greenness in T2 could be confirmed by the

widespread yellow color around the existing built-up areas in the

main city and in the two subcities. In Xiasa, a suburban college

town, road networks and communities constructed in T1 were

depicted in red (Figure 5e). The remaining vegetation along the

road networks was replaced by new construction in T2, indicated

by yellow. Meanwhile, some of the roads and communities

represented by magenta suggest vegetation recovery in the form of

road and community greening after 2002. In most WLSS regions,

the vegetation coverage remained consistently high, as indicated in

white. However, a much more complex color composition of blue,

green, purple and magenta was observed in XNWP and reflects a

complex but overall subtle increase in wetland vegetation coverage

over the past two decades.

Figure 3. The layout of the concentric belts. Twenty concentric belts radiating from the city center, where each belt spans 0.5 km.
doi:10.1371/journal.pone.0112202.g003
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A clear spatial disparity in vegetation coverage change intensity

was found (Figure 6) by analyzing the relationships between the

change intensity and the distance to the urban center. In T1, the

vegetation change pattern was dominated by a moderate increase

within 2 km. At 2 km, the extreme decrease soared to over 20%

and became the major change process. Two peaks appeared at

approximately 4 km and 19 km, reflecting the vegetation loss due

to the expansion of the core built-up area and construction of the

new subcities. In T2, a greater intensity and extent of moderate

increases was observed; this suggests that vegetation coverage

more vigorously recovered in the core built-up area. However, a

more severe extreme decrease occurred in the outer region of the

core built-up area and subcities and peaked at approximately

11 km and 15 km. Therefore, the hotspot of the vegetation decline

moved to the suburban area between the core built-up area and

the subcities. The conversion, both negative and positive, was

much more significant in the later decade. A pattern similar to the

class of the extreme decreases could be found in the class of

moderate decreases, while the class of extreme increases remained

consistently low and showed no distinct pattern related to distance

in either period.

General pattern of urban greenness accompanied by
urban expansion

Twenty concentric belts radiating from the city center to the

fringe were analyzed to provide insights into the spatial patterns of

urban greenness change within and around the city during the two

periods. In 1990, the average vegetation fraction remained low in

belts 1–5 but increased significantly in belt 6; this highlights the

difference in vegetation cover between the core built-up area and

Figure 4. Comparisons between the reference and modeled fractions. (a) Vegetation fraction scatter plot for 2010, (b) vegetation fraction
residuals for 2010, (c) vegetation fraction scatter plot for 2002, and (d) vegetation fraction residuals for 2002. Perfect agreement, represented by the
1:1 line, is displayed in the scatter plots. The best-fit line is displayed in the residual plots to indicate the general trends of overestimation and
underestimation.
doi:10.1371/journal.pone.0112202.g004

Table 2. Total percent vegetated area and changes from 1990 to 2010 for the study area and the two scenic spots.

1990 2002 2010
1990–2002
(per year)

1990–2002
(per year)

TPVA 64.61% 54.51% 42.76% 20.84% 21.53%

TPVA in XNWP 52.39% 54.44% 58.92% 0.17% 0.58%

TPVA in WLSS 85.51% 84.70% 83.13% 20.07% 20.20%

TPVA is the total percent of vegetated area, XNWP is the Xixi National Wetland Park, and WLSS is the West Lake Scenic Spots.
doi:10.1371/journal.pone.0112202.t002
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the suburbs. Because of urban expansion and sprawl, the

boundary between the core built-up area and the suburbs was

extrapolated to location near belt 9 in 2002. Meanwhile, a slight

increase was detected for belts 1–5, indicating an improvement in

the vegetation cover in the existing urban area. By 2010, a more

obvious increase occurred in belts 1–9, along with a more severe

decrease in belts 10–20. Additionally, the correlation between the

vegetation abundance and the distance from the city center

became weaker. These changes occurred because nearly all the

regions within the twenty belts were highly urbanized, and only

sparse native vegetation remained in belts 16–20. With the

expansion and sprawl of built-up areas, urban greenness declined

sharply in the urban fringe and the suburbs. A subsequent

recovery of the vegetation cover occurred in the existing urban

area, along with a decrease in the outer belts. This reflects the

main process of conversion from natural vegetation to artificial

urban greening because of urban expansion.

Urban greenness in the existing urban area contributes valuable

ecosystem services which are related closely with the daily life of the

local residents [55]. The lowest vegetation fraction was found in

1990 (Figure 7a: belts 1–5, 1990). Since then, the vegetation cover

continued to increase in the older neighborhoods over the past two

decades (belts 1–5 in T1 and belts 1–9 in T2), indicating sustained

improvement in the urban environment can be a component of the

urbanization. In 2010, the average vegetation fraction of the urban

area was nearly double that in 1990. In addition, an obvious

increase in the middle cover pixels occurred in belts 1–10, especially

in belts 1–5 (Figure 7d), along with a decrease in the low cover pixels

(Figure 7e). The result of change intensity analysis also showed that

the changing pattern in urban center was dominated by moderate

Figure 5. RGB color composite using vegetation fraction maps of 1990 (R), 2002 (G) and 2010 (B). The typical examples demonstrated
are (a) the study area, (b) Xixi National Wetland Park, (c) the urban center, (d) residential communities and (e) the Xiasha suburban college town.
Colors for the typical compositions of the vegetation fractions on the three dates are illustrated. H represents high vegetation fraction and L
represents low vegetation fraction.
doi:10.1371/journal.pone.0112202.g005
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increase. These characteristics of vegetation fraction within a pixel

further indicated those small green patches with size smaller than

the pixel size of the Landsat data has mainly contributed to the

increase of green space in existing urban area.

Discussion

MESMA and integration of the multiple analysis
technique

The accuracy of the information acquired on vegetation cover

has a direct influence on how well the trends and processes of

greenness change are understood, especially for a diverse urban

area. Urban greenness is generally highly fragmented in Chinese

cities, resulting in a large number of small patches. Li et al.

indicated that 86% of the patches of urban greenness were smaller

than 900 m2, and 37% were smaller than 100 m2 in their study

area [56]. Likewise, our study highlights the importance of the

increasing area of small green patches, which may be difficult to

detect by traditional classification techniques. An analysis based on

directly classifying medium-resolution data would lead to an

underestimation of the amount of urban greenness, which is

crucial to urban areas with generally limited amounts of vegetation

cover. This study demonstrated the advantage of MESMA in

providing accurate and reliable subpixel information with physical

meaning. However, this method still failed to acquire accurate

information on the species and structure of urban greenness in

multispectral images. Moreover, the method was unable to resolve

nonlinear mixing effects, and it generally needed more supervision

in the unmixing process. By integrating RGB-vegetation fraction

model, the change intensity analysis and concentric analysis,

detailed information on the direction, magnitude, location and

pattern of the variation of urban greenness were able to be visually

and quantitatively analyzed. These information have improved

our understanding of how urban greenness evolved under rapid

urbanization. The strength of MESMA is its ability to represent a

wide variety of surface reflectance types as simple combinations of

endmember abundances. Furthermore, because of the global

availability and rich historical data archive of the Landsat data,

analysis based on these techniques can be easily expanded to other

cities around the world.

Greenness change in response to urbanization and
greening policies

Despite the proven benefits of urban green spaces [3,4,5,6,7],

widespread losses of these spaces have been reported in American

Figure 6. Spatial characteristics of the vegetation fraction change from the urban center over the two periods. (a) 1990–2002 and (b)
2002–2010. The vegetation change categories are shown by the different colors in the legend.
doi:10.1371/journal.pone.0112202.g006
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and European cities [9,11]. In our study area, one-third of the

vegetation cover that was present in 1990 was gradually lost over

these two decades. The RGB-vegetation fraction model showed

that most of the vegetation loss occurred in the urban fringe or in

the new subcities. This trend agrees with the regional decline in

vegetation cover caused by urbanization, as observed by Sun et al.

[57]. In contrast to the overall decline throughout the study area,

both the RGB-vegetation fraction model and concentric analysis

demonstrated a consistent increase in urban greenness in the

existing urban area. This confirmed the finding that Chinese cities

have undergone a steady increase in urban greenness in the built-

up areas [12]. We further demonstrated the contribution to the

recovery of urban greenness by the increasing area of small green

patches. The vegetation cover of the scenic areas remained

relatively stable, even with a slight increase in XNWP, which

reflects the effect of a scenic protection policy and an ecological

renewal project. The changing pattern of greenness in the study

area from 1990 to 2010 was a response to the combined effects of

rapid urbanization and greening policies. Because of China’s

unique institutional character, cities have developed into modern

metropolitan areas in a much different way than other regions.

The government plays a key role in guiding urban planning.

Greenness was very limited in the urban area in 1990, and most of

the greenness was located in the West Lake Scenic Spots. This

uneven distribution limited the access of urban residents to the

ecological benefits of urban green space. The high degree of

urbanization in the city center and the rapid growth of urban

population exacerbated the demand for urban greenness but also

placed limits on its development. The implementation of new

urbanization strategies since 2000, such as ‘‘leapfrog development

along the Qiantang River’’ and ‘‘crossing the Qiantang River and

developing southward’’, triggered eastward sprawl and the

construction of two subcities [54], resulting in the use of more

space to reduce the population and building density and the

availability of space for the creation and development of urban

green space system. A green network system called ‘‘Two rings,

Two axles, Six ecological zones’’ and a series of greening projects,

e.g., the West Lake comprehensive protection project, the Grand

Canal comprehensive protection project, and the Xixi wetland

comprehensive protection project, have been conducted. These

Figure 7. Concentric vegetation coverage analysis in each belt for each year. (a) Average vegetation fraction (AVF), (b) percentage of area
of high coverage pixels, (c) percentage of area of middle-high coverage pixels, (d) percentage of area of middle coverage pixels, and (e) percentage of
area of low coverage pixels.
doi:10.1371/journal.pone.0112202.g007
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projects contributed to the accelerated recovery of urban

greenness from 2002 to 2010 within the city. Meanwhile,

innovative efforts such as retrofitting green space alongside

formerly dilapidated canals, underneath and alongside main roads

and railway lines were done to activate neglected spaces to restore

lost green space [58]. In addition, the urban greening manage-

ment regulation of Hangzhou set the minimum greening cover for

new residential area to 30%. These factors explain the remarkable

increase in the number of middle cover pixels.

Conclusions

Acquiring accurate and area-wide information remains a

challenge in urban environments due to the extremely heteroge-

neous spatial patterns within cities. Subpixel methods can

overcome this problem and provide valuable quantitative infor-

mation. In this paper, we investigated the patterns of change in

urban greenness in Hangzhou, China, over the past two decades

using Landsat imagery from 1990, 2002, and 2010. Multiple

endmember spectral mixture analysis (MESMA) was used to

derive vegetation cover fractions (VCFs) for various segments of

the urban area. Despite the complex spectral confusion of different

land cover types in the urban area, MESMA could provide

accurate and reliable subpixel information of the vegetation cover

fraction. An RGB-vegetation fraction model, change intensity

analysis and the concentric technique were integrated to

characterize the detailed, spatial characteristics and overall pattern

of the urban greenness change over time.

The study area has experienced a drastic loss of urban

greenness. Nearly one-third of the vegetation coverage that was

present in 1990 was gradually lost over the past two decades. Most

of this loss is located in the urban fringe and suburban areas due to

urban expansion and the construction of new subcities. No

significant change occurred in scenic spots, except for a recovery of

vegetation coverage in the Xixi National Wetland Park from 2002

to 2010. Meanwhile, a remarkable recovery in the vegetation

coverage occurred in the existing urban area that was mainly

attributed to the continuous increase in small green patches. These

changing patterns were more obvious from 2002 to 2010 than

from 1990 to 2002. The characteristics of the changing pattern of

urban greenness over time and in different parts of the urban

environment reveal the combined effects of rapid urbanization and

greening policies.

This study demonstrated the unique role of medium-resolution

satellite images in the longitudinal analysis of the evolution of

urban greenness. Subpixel methods provided abundant meaning-

ful information, and more analysis techniques could be developed

based on such continuous information. Furthermore, regional

comparisons of cities with different economic and natural

conditions should be conducted using these techniques to

investigate the relationships between urban greenness and

urbanization.
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